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On bilinear forms in Gaussian random variables, Toeplitz

matrices and Parseval’s relation
S FLORIN AVRAM

University of North Carolina
Center for Stochastic Processes -

s
N and 0
o Purdue University "
) Mathematics Department K
]
b Abstract. We improve a result of Szego on the asympototic behaviour of
'.:» the trace of products of Toeplitz matrices. by
' ‘ As an application, we improve also his result on the limiting behaviour of .
‘ the bilinear forms "
o B, = Z a;—; X X;,
_: 1,7=1
" where X, is a stationary Gaussian sequence. A large deviations result is derived
'y as well.
N 7
b 1. Statement of Results -
"' A. We study below the asymptotic behaviour of bilinear forms
)
'~
‘-' n .
N (1.1) B, = Z a—; XX, -
«! : 1,y=1 :‘
L -
A
where X, is a mean zero stationary Gaussian sequence.
S
'} This problem was first studied in the book of Grenander and Szegd, “Toeplitz ma-
2 g
" $ trices and their applications” (1958), as an application of their theory of the asymptotic
% =
behaviour of the trace of products of Toeplitz matrices.
! Recently, there has been a renewed interest in this problem. See Fox and Taqqu (1983) =
> N
’ and (1986) and Taniguchi (1986). g
e In Theorem 1 below we improve the results of Grenander and Szeg6 on the asymptotics
’. . .
o of the trace of products of Toeplitz matrices. This theorem can be viewed also as a
" 3 . . .
o generalization of Parseval’s relation. As a corollary of Theorem 1, we get a result which
: W
1 Keywords and Phrases: Toeplitz matrices, trace, singular values, cumulants, large deviations.
. A.M.S. 1980 Subject Classifications: Primary, 60F05; Secondary, 60F10.
f.: This research supported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144.
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= )
improves Theorem 11.6 of Grenander and Szegd on the bilinear forms B, (See Theorem
2).
The proof of Theorem 1 is based on a norm inequality (See Theorem 3), communicated
‘:_\ to us by Professor Larry Brown. '
!:.:
: In a different direction, we establish a large deviations result about B, (See Theorem
4).
B. Let:
(1.2) rn = EXcXn
denote the covariance of the sequence X,,. The key fact about the bilinear form B, is that .
its cumulants are:
(1.3) cumg(B,) =281 (k — 1)!Tr(AnR,)",
where A,, R, are the n x n Toeplitz matrices:
An(i,7) = ai_j, Rp(t,5) =rj, fori,j=1....,n
(Formula 1.3) is an easy application of the “diagram” formula; see Rosenblatt (1985,
Theorem 2.2)).
The first step in studying B, should be thus the investigation of the asymptotic
behaviour of the trace of products of Toeplitz matrices.

Let F,sy), v=1,...,s be n x n Toeplitz matrices of the form

F,{")(i,j)=f"(f} fori,7=1,...,n andv=1,...,s,

and suppose f,EV) are the Fourier coefficients of the real, even functions f(*)(z), i.e.:

(1.4 @ = [ et a)a
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- THEOREM 1. Suppose that FPrEr :
:r' ” ceec oty L ‘
-: i NTI - B PR
’ o o
M f(y)(z) € Lp,,’ 1< p, < o0 U . . ,
:‘j 7. L! {'
; ; Br o T
_ a) ify 0 _ 1 <1, then 251 ——
U Lo ;

o .1 i - e

oy (1.5) lim —Tr( F(”) / H 27rf(“ dr 7 ‘

:-:. nTeen T u=1 I
-:‘: A !

{ :

. b) ifa>1,anda> 3" _,(p.,)"!, then - N
L)
DO
’x‘: 6 li T F¥
o 1. im —Tr
% (1:6) Jim VHI

° =

B Remarks: 1) Formula 1.5 was first obtained by Grenander and Szezd (1958), 7.4,

- under the assumption that f(")(x) are bounded.
- 2) Theorem 1la is also a generalization of the classical Parseval relation. Indeed, it is
- .

- shown in the Appendix that the L.H.S. of 1.5 can also be written as the Caesaro sums:
G 1 2 Ap+ -+ Any
1.7 ~Tr FY) = ,

) (17) —Tr(]] F¥) -

7

ﬁ-: where A, are the “skew” convolution sums:
A
.2 (18) A= ) fu S

s Vit v, =0

-; (V140 )EDy

I-{

“ and

N j

MRS _— . ,

:: Dk—{(ul,...,u,).lxg?%(‘ 2 vy — mm Zu, < k}.
0

7 Thus, Theorem 1la asserts the Cesaro convergence of the “skew” convolution sums.
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RN Note also that the “usual” convolution sums,

Bu= 3 VST

)-‘E{],...,_n)'
N+ +3.=0
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converge to the R.H.S. of 1.5, if f¥N(z) € Lp,, So0_y(pv)"' £ 1,and 1 < p, < . .

since then the Fourier sums of f(*)(z) converge in L, sense, and the scalar product is

»
]

2

:-.‘_’.: continuous. In this case, taking Cesaro sums is unnecessary. If, however, some p, equal 1 :
iy
o or 0o, and Y.°_,(p,) ! = 1, we do not know whether By converge to the R.H.5. of (1.5
u in Cesaro sense. However, for n = 2 and 3, C,, = D,, and in the case n = 2 we have the
o classical Parseval relation (See Katznelson, (1968), pg. 35).
:::','ij As an immediate corollary of Theorem 1 we get:
.\-’ THEOREM 2. Let ax and ry in 1.1) and 1.2) be the Fourier coefficients of the rea!.
k '-:t:‘ even functions a(z) and r(z), and suppose a(z) € Ly,, r(z) € Lp,, 1 < p1, p2 < o and
e
70
o (1.9) (p) ™'+ (p2) "t <270,
8
- Then,
‘x-.
\.\....
N B, - E(B
p (1.10) Bn ~E(Br) 4 N(0,0%),
' ﬁ
_\':: where i
N o= 2(271')4/ a?(z)r?(z)dz.
'\:;., -
(Ot
.r} Proof: Use the method of cumulants:
:'::"'f 0 fork =1
B, - EB 3
;‘;,;. cumk(—"—\—/_n—:) = 2Tr_(A_;__R_,.)_ for k =2
ron 2k’l(k—1)!m%/§£ for k >3
-
s
o 0 for k =1
G
N R (2m)* [T _a*(z)r*(z)dz  for k = 2, by Theorem la
A 0 for k > 3, By Theorem 1b
LIS
o, .

w, —
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Notes: 1) 1.10 was first established by Grenander and Szego (1958, Thm. 11.6), under

the assumption that a(z) and r(z) are bounded.

2) Taqqu and Fox (1983) extended the result of Grenander and Szego under a set
of assumption different from ours. They show that if a(z) and r(z) are continuous, ex-
cept maybe at 0, and are regularly varying at O, then a(z)r(z) € L, (which is a weaker
assumption than 1.9) is sufficient for 1.10 to hold.

C. Theorem 1 follows from the following inequality, communicated to us by Larry

Brown:
THEOREM 3. Forl < p<ox,

(1.11) HF,alSnl/pj;f(I)I:p, A

where | F,l', = (Z;zl |sJ-_n!P)1/p, s;n being the singular values of the matrix F,.

(1.11) can be first established for p = 2, oc and 1. By the Riesz convexity theorem. it

follows then that it holds for every p.

D. We see from Theorem la that when a(z) and r(z) are bounded, the cumulants
of B, increase all at the same asymptotic rate (cumg(B,) = O(n)). In such cases, large
deviations results hold. We get, by applying Lemma 1 of Cox and Griffeath (1985), the

following:

THEOREM 4. Suppose a(z) and r(z) are even, real functions, which are Riemann
integrable. Let L = 47 sup a(z) -sup r(z), and p(s) = —1 [T ¢n(1 — 4rsa(z)r(z))dz, for
z z
any s € (—oo,L~1). Then,

a) for any a € ('(0), /ljlrdn_lgo'(s))

lim lPr{gr:"— >a) = —I(a)

n—oon

b) for any e € ( lim ¢'(s),¢'(0)
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b ‘l %" ."
AR

"' where I(a) = ass — p(Sa), and s, is the unique solution of p'(sa) = a.
"\ 2. Proofs
J-...
S Proof of Theorem 1: a) Let m be the number of f(¥) which are non-polynomials (have
~,_ infinitely many non zero Fourier coefficients). We will use induction on m. For m = 0 (i.e.
b
v all f(*)(z) are polynomials), it is easy to check that (1.5) holds. Suppose now (1.5) holds
':: whenever we have at most m non-polynomials. ’
o Consider then any set of f(*)(z) which has at most m+1 non-polynomials, and suppose
\ w.l.o.g. that f(1)(z) is a non-polynomial. Let then f,El)(:c) denote the kth Fejer sum of
xj FM(z), let FA)k(z) = F)(2) — f(l)(:c), and let F,Sl,z and F{* be the corresponding
o '
! Toeplitz matrices. Then
b=
:‘ (2.1) lim Tr (1) H FV)) = / 27°f(1) H 27 () (z))dx
O ’ n—oo n -
.':“ v=2 - v=2 °4
s Y
e ]
by the induction hypothesis, and the R.H.S. of (2.1) converges as k — oc to i

ST Ti_,(2rf¥)(z))dz since 1 < p; < oo implies that Hf,El) AR P 0, and
—oc
°_ f ") z) € Ly, , where (p;)"! + (¢1)"! < 1. To show then that (1.5) holds with up
=2 q

-

5
-
Ty

Pt 4

R

to m + 1 non-polynomials it remains only to note that:

-

j S A o

."‘"‘ >
s e

lim lim ITrF )k H F¥)|

LY

,.r: k—oon—oo n
-
N — 1
e (1)k (v)
5 < lim Tim ~|F H F{|ly
-f..-
L < (1).k (v)
.:‘:_ —_ kllrl;; nl_l_‘m “F le J.;Iz “F Hpv
.:.: E (Pu)_l
. T Né&wv
! < lim Tim ~———— [If*()],, H 1£¢) (2)llp. (by Thm 3)
A k—o00 n—00 n
»
¥ b) Assume first w.l.o.g. Y ,_;(p.)”! > 1. (Otherwise the result follows from a)).
W
E: 6
b
d,
S e ,
' .’ .:’ Y : ? " o :‘ }':"f"‘l’“ ' "l':'xi{-d .'L-"{ -\;\'rﬂi l:.d":‘;'ﬁ l n\ Ih'\"k'v ot ‘\: \::. 1_4" - : -‘I‘ o q--‘.(: _; :_- :. ':_n :_;.‘: __. -':._:4
<. DRG0 X A ;.:u'cb&'f‘\.'f.'\' ‘f:x"\n‘(}-. -\{mﬂu{({xmﬂ. SO



The proof is now similar with that of part a). If all f¥)(z) are polynomials, the limit

Ay 4,4,

is 0 since a > 1. Otherwise, if say, f(!)(z) is a nonpolynomial, replace f(}) by f(1).k . (1),

?‘ Finally, let 6 = 3" _,(p.) ™!, and note that

..‘

2 1 ] 1 a

. N s i

; —|Tr O TT R < — I F Do, [T IFS Loy

L v=2 v=2

t 1 ki 2 )

. < n—ai]F,Sl)’ lip H [ 2iSedirs (since 6 > 1)

X) v=2

)

2 ! oo P )k, T, (v)

3 S g e PR T (by Theorem 3)
f v=2

) 8

B H 1 ’k‘ ' ™

) <O, JT 1M — 0. o

" v=2

3

L Proof of Theorem 4: This is a straightforward application of Lemma 1 of Cox and
f:' Griffeath (1985). We need only to check that for any s € (—oc,L™ '), the cumulant
generating function:
‘ ©¢n(s) = log Ee*B satisfies:
:: (2.2) lim ¢n(s) = b €n(l — 4nsa(z)r(z))dz.

N n—soc’ 2 o
r
o But p,(s) equals:

F:. 1 n

:.j ©nl(s) = —3 Zﬁn(l —28Ain),

. i=1

! where A, ,, are the eigenvalues of A,,, Ry, for any s < [Maz 2); ]~ ! (Direct computation).
. 1

N (2.2) follows now Theorem 4.4 ii of Gray(1971), since a(z), r(z) are Riemann in-
) tegrable, and the function €n(1 — 47sz) is continuous for z € (—oo, &), if s < L1

C

Note: The assumption of Riemannian integrability is probably too strong. We follow
y however Gray in adopting it, due to the conceptual simplicity which it brings to the
.L problem. (Under this assumption, the Toeplitz matrices are asymptotically equivalent
.
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with circulant approximands, which are much easier to manipulate. This approach is

nicely illustrated in Gray (1971)).

Acknowledgement: We thank Professor Larry Brown for communicating to us Theo-

rem 3.

Appendix

Proof of formula 1.7: Let
Cn=1{1,...,n}°,

let T(5,....,7s) denote the range of sums Eﬁ___l I, l.e

D= {(j1e--v3) t D de = 0,T(5h.....je) < n},

v=1

and let A,, be the “skew” convolution sums:

_ \" (1 fe
An = L le "'fJ. '

1€D,

Then,
L (TT Fony = 1 )
~Tr([] F) = = ) f‘l_ufw_‘s.. &
n v=1 nl€C
_1 (1) (s)
(A.1) T n Z £ Z 1
JEDn-, t1—-12=0
t,—41 =2,
== 2 A L= Thn )
ZeDn-l

The last equality holds since the set of all t’s with given j differences can be obtained

from any of its elements g'(o), by adding or subtracting (1,...,1) as long as all components

8




are in the range {1,

max if,o)
1 4

Finally, from (A.1) we get

8

%Tr(H F")

v=1

" ‘-J- P LI -_.'_ o

'( .o(,.’ et
“y

¥

. -(0) _
— mini{? =
1 4

-(0) -(0)

,n}; as such, it has (n —max1,’) + rnm 1, ' elements. Furthermore,
1 4

max(—1(%)} — min(-{(")
v 1%

max(igo -0 - min(z'(lo) -1
14 v

ax( _ jx) — min(}_ ji)
k=1 k=1

T(]-l,...,].a).

1 n—-1
OROIR
Z =2 A
k UJ_ED& k=0
9
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